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OVER-ALL PERFORMANCE OF J65-B3 TURBOJET ENGINE FOR 

REYNOLDS NUMBXFi INDICES FROM 0.8 TO 0.2 

By D. B. Fenn and Will iam L. Jones 

SUMMARY 

The steady-state over-all performance characteristics of the J65-B3 
turbojet engine were determined in an altitude test chamber for four 
exhaust-nozzle areas at Reynolds number indices of 0.8, 0.4, and 0.2. 
This range of Reynolds number indices corresponds to a range of altitudes 
from about sea level to 51,500 feet at a flight Mach number of 0.8. 

Generalized data are presented to allow calculation of engine per- 
formance at any flight condition corresponding to a Reynolds number index 
within the range Investigated. Engine performance calculated from these 
generalized data is presented for seven altitudes over a range of flight 
speeds from zero to about 1100 knots. 

, 
The use of an exhaust nozzle sized to give rated perforce at sea 

level would permit operation near the point of minimum specific fuel con- 
sumption for a wide range of flight conditions and engine speeds. 
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INTRODUCTION 

The performance characteristics of the J65-B3 turbojet engine were 
determined in an altitude test chamber at the NACA Lewis laboratory at 
the request of the Air Research and Development Co-d, U. S. Air Force. 
Preliminary altitude performance data with the rated exhaust-nozzle area, 
together with the operational limits and windmilling and starting char- 
acteristics of the engine, are contained in reference 1. The component 
performance of the engine is presented in reference 2, and the rotating- 
stall and blade-vibration characteristics of the compressor are reported 
in reference 3. 
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The present report summarizes the over-all performance of the engine 
by presenting performance for a range of exhaust-nozzle areas, altitudes, 
and flight Mach numbers. Data are presented in terms of conventional 
generalized parameters for a range of corrected engine speeds from 6700 
to 9200 rpm, Reynolds number indices from 0.8 to 0.2, and exhaust-nozzle 
areas from 1.90 to 2.51 square feet. These data permit calculation of 
performance at any operating condition where sonic (choked) flow exists 
in the exhaust nozzle. Over-all engine performance maps are presented 
for a flight Mach number of 0.7 at altitudes of 15,000, 35,000, and 
50,000 feet. In addition, the altitude performance of the engine, cal- 
culated from generalized data for the rated exhaust nozzle (1.97 sq ft), 
is presented for a range of altitudes from sea level to 55,000 feet, 
flight speeds from zero to 1100 knots, and engine speeds from 7000 to 
8300 rpm. The data are presented in both graphical and tabular form. 

APPARATUS 

Engine 

The J65-B3 turbojet engine (fig. 1) has a 13-stage axial-flow com- 
pressor, an annular prevaporizing-type combustion chamber, and a two- 
stage turbine. At military rated conditions, the engine speed is 8300 
rpm and the turbine-discharge temperature is 1166' F. At sea-level static 
conditions with no ccmpressor-inlet screen, the engine has a guaranteed 
thrust of 7220 pounds and specific fuel consumption of 0.92. The sea- 
level, static, rated air flow of the engine is approximately 118 pounds 
per second. The engine is 87: inches long from the compressor-inlet 
flange to the turbine exit and has a maximum diameter of 37: oinches. 
The engFoe dry weight is 2785 pounds. The fuel used throughout this 
investigation was MIL-F-5624A, grade JP-4. 

Installation 

The engine was installed in an altitude test chamber as shown in 
figure 1. A bulkhead with a labyrinth seal around the front of the en- 
gine (fig. 2) was used to allow independent control of inlet and exhaust 
pressures. The laboratory air systems supplied combustion air to the 
engine and removed the exhaust gases. The engine was mounted on a thrust 
platform equipped with a null-type pneumatic balance. 

Instrumentation 

The location and amount of instrumentation used during this inves- 
tigation are shown in figure 2. Total-pressure and -temperature probes 
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were located at the centers of equal annular areas at various stations 
in the engine. Engine fuel flow was measured by calibrated rotometers. 
All pressures were measured with manometers and recorded photographically. 
Self-balancing potentiometers were used to record all temperatures. 

PROCEDURE 

With each of the four exhaust nozzles (1.90, 1.97, 2.07, and 2.51 
sq ft) investigated, the engine was operated at inlet conditions corres- 
pending to Reynolds number indices of 0.8, 0.4, and 0.2. At each Reyn- 
olds number index, the ram pressure ratio (P2/po) was set close to the 
facility limit with the engine operating either at rated speed or limit- 
ing turbine-discharge temperature. The ram pressure ratio was then held 
constant while engine speed was reduced. This procedure was used in 
order to maintain sonic flow in the exhaust nozzle over as wide an engine- 
speed range as possible. When the exhaust nozzle is fully choked, the 
pressures and temperatures within the engine are independent of the am- 
bient pressure. The symbols and methods of calculation used in this re- 
port are presented in appendixes A and B, respectively. 

RESULTS AND DISCUSSION 

Performance data are presented in terms of generalized parameters 
to show the effects of Reynolds number and to allow calculation of per- 
formance at specific flight conditions. To summarize the performance of 
this engine, performance maps were calculated from generalized data for 
the rated exhaust nozzle over a wide range of flight conditions. 

The exhaust-nozzle flow coefficients reported for this engine in 
reference 2 are essentially constant for nozzle pressure ratios in excess 
of 2.0. The corrected engine speed at which the exhaust-nozzle pressure 
ratio is equal to 2.0 is presented as a function of flight Mach number 
in figure 3 for the four exhaust nozzles investigated. Operation above 
the line for each nozzle area (choked) indicates the region where the 
exhaust-nozzle pressure ratio is 2.0 or higher. 

The operational limits of the engine with the rated exhaust nozzle 
at a flight Mach number of 0.8 are reproduced from reference 1 in fig- 
ure 4. The operational limits include the engine speed for limiting 
turbine-discharge temperature, "idle" throttle position, lean combustion 
blow-out, and wtidmilling as functions of altitude. It can be seen from 
figure 4 that limiting turbine-discharge temperature occurred below rated 
engine speed for altitudes above 20,000 feet. The throttle position 
specified by the manufacturer as "idle" limited operation to altitudes 
below 67,000 feet. However, reductions in fuel flow below "idle" per- 
mitted steady-state operation up to a facility limit encountered at 

___ - -~ .~-~~~- -~.. -~~ -.- 
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75,000 feet. The shaded area superimposed on figure 4 illustrates the 
range of conditions over which performance can be calculated from the 
generalized data presented herein for the rated exhaust-nozzle area. 
The extent of this region is limited to altitudes below that correspond- 
ing to an inlet Reynolds number index of 0.2 and to engine speeds above 
that required to reach an exhaust-nozzle pressure ratio of 2.0. This 
shaded area covers the major portion of the practical operating eondi- 
tions of the engine within the range of Reynolds number indices investi- 
gated. The numerical exsmples contained in appendix C illustrate calcu- 
lation procedures that may be used to obtain performance within the 
region where the exhaust-nozzle flow coefficient is constant. If per- 
formance data are required in the region where the exhaust-nozzle flow 
coefficient is not constant, the method reported 
used. 

in reference 4 may be 

Generalized Performance 

Air flow. - Corrected engine inlet air flow is presented as a func- 
tion of corrected engine speed in figure 5 for a range of Reynolds num- 
ber indices from 0.8 to 0.2 and exhaust-nozzle areas from 1.90 to 2.51 
square feet. Within the range of variables included in this investiga- 
tion, no consistant variation of corrected air flow with either Reynolds 
number index or exhaust-nozzle area could be detected. At sea-level 
static and military rated conditions the air flow of the engine used for 
this investigation was about 4 percent higher than the manufacturer's 
specifications. 

Pumping characteristics. - The variation of engine total-pressure 
ratio with corrected engine speed at a Reynolds number index of 0.4 is 
shown in figure 6 for the four exhaust nozzles investigated. Lines for 
exhaust-nozzle areas other than those included in this investigation 
and lines of constant engine temperature ratio have been cross-plotted 
onto this figure to facilitate calculation of engine performance at spe- 
cific flight conditions. An inlet Reynolds number index of 0.4 was se- 
lected for the presentation of these engine pumping characteristics be- 
cause the widest range of corrected engine speeds was obtained at this 
condition. 

The effects of Reynolds number on engine pumping characteristics 
are shown in figure 7. In this figure engine total-pressure and 
-temperature ratios are divided by their respective values for the same 
corrected engine speed and exhaust-nozzle area at a Reynolds number 
index of 0.4. Although it is not generally possible to draw single 
curves to show Reynolds number effects on pumping characteristics, in 
this instance the variations with both corrected engine speed and exhaust- 
nozzle area were less than 1 percent from the mean. As Reynolds number 
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I i index is decreased from 0.8 to 0.2 at a given corrected engine speed and 

exhaust-nozzle area, the engine total-pressure and -temperature ratios L ., 
iii 

I 

increased approximately 4 and 8 percent, respectively. 

j Thrust. - As shown in reference 5, the jet thrust obtained from an 
.I: engine with a choked exhaust nozzle can be correlated by the following 

j: 
relation: 

I 
1 
'I 

,I;; 

F3 [ (+.pPg -pj - = CF (r + 1) 
i A, f” 

y-l 
1;;: For nonafterburning operation, the average value of (y + 1) & 

was found to be 1.26. ( J / 

The correlation of the jet thrust per unit of exhaust-nozzle area 
is presented in figure 8 for a range of Reynolds number indices from 
0.8 to 0.2 and exhaust-nozzle areas from 1.90 to 2.51 square feet. The 
slope of the mean line through the data yields a value for the thrust 
coefficient CF of 0.98. This thrust correlation may be used in con- 
junction with engine pumpingjcharacteristics to predict the jet thrust 
of the engine at any operating condition where sonic flow exists in the 
exhaust nozzle. 

Combustion efficiency. - Combustion efficiency of several engines 
has been shown to generalize with the empirical parameter pt/V (ref. 6). 
However, the parameter Wa,2T9 is used herein because it is proportional 
to pt/V (ref. 7) and is more convenient for calculation purposes. The 
variation of combustion efficiency with Wa,2T9 is presented in figure 9 
for all the Reynolds number indices and exhaust-nozzle areas included in 
this investigation. The combustion efficiency obtained from figure 9 can 
be used together with engine air flow and pumping characteristics to cal- 
culate the engine fuel requirement as shown in appendix C. 

Performance Calculated from Generalized Data 

Performance maps. - Over-all engine performance was calculated from 
generalized data for a flight Mach number of 0.7 and altitudes of 15,000, 
35,000, and 50,000 feet assuming NACA standard flight conditions. These 
calculations included the four exhaust nozzles investigated and are pre- 
sented in the form of performance maps in figure 10. Performance maps 
are defined by the relation between exhaust-gas total temperature and 
engine speed for selected values of exhaust-nozzle area, net thrust, and 
specific fuel consumption. These maps not only afford a convenient 
method of presenting a large amount of data but also show the location 
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of specific-fuel-consumption contours. Because'the total variation in 
specific fuel consumption was small for this engine at a given flight 
condition, the precise location and shape of the contours is uncertain. 
Although the 2.07-square-foot exhaust noizle gave minimum specific fuel 
consumption 

I 
it can be seen that the use of the rated exhaust nozzle 

(1.97 sq ft would result in operation very close to the minimun through- 
out the range of Reynolds number indices investigated. 

Altitude performance. - Data for the altitude performance were cal- 
culated from the generalized performance data for the rated exhaust noz- 
zle at altitudes from sea level to 55,000 feet, flight speeds from zero 
to 1100 knots, and engine speeds from 7000 to 8300 rpm. These charts 
(fig. 11) show the variation of net thrust with the true air speed at 
each altitude. Superimposed are lines of constant engine speed, fuel 
flow, and air flow. The highest flight speed on each chart corresponds 
to the flight Mach number at which the limiting compressor inlet temper- 
ature (T2 = 200° F) is reached. In addition, there is a line on each 
chart corresponding to the engine speed at which the exhaust gas reached 
an average total temperature of 1166' F. The sea-level performance 
chart (fig. 11(a)) h s ows for zero ram and rated conditions that the en- 
gine used for this investigation produced approximately 7700 pounds of 
thrust with about 123 pounds per second of air flow and a specific fuel 
consumption of 0.91 pound per hour per pound of thrust. 

STJMMARYOFRESILTS 

The over-all performance of the J65-B3 turbojet engine was deter- 
mined over a range of Reynolds number indices from 0.8 to 0.2 and 
exhaust-nozzle areas from 1.90 to 2.51 square feet. With the rated ex- 
haust nozzle (1.97 sq ft.), the sea-level static performance of the en- 
gine operating at rated speed was: thrust, 7700 pounds; air flow, 123 
pounds per second; and specific fuel consumption, 0.91 pound per hour 
per pound of thrust. 

The variation of specific fuel consumption with both exhaust-nozzle 
area and engine speed was small for a particular flight condition. The 
use of the rated exhaust nozzle permitted operation close to the point 
of minimum specific fuel consumption for a wide range of flight 
conditions. 

At a constant corrected engine speed and exhaust-nozzle area, de- 
creasing Reynolds number kdex from 0.8 to 0.2 resulted in an increase 
in engine total-pressure and -temperature ratios of 4 and 8 percent, 
respectively. Within the range of variables included in this investiga- 
tion, no consistent variation of corrected air flow with either Reynolds 
number index or exhaust-nozzle area could be detected. 
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The engine was operated with the rated exhaust nozzle at a flight 
Mach number of 0.8 up to a facility limit encountered at 75,000 feet. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, March 9, 1955 
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SYMEiOIs 

The followFng symbols are used in this report: 

area, sq ft 

flow coefficient 

thrust coefficient - ratio of scale jet thrust to ideal jet 
thrust ( 

7 
roduct of ideal mass flow and ideal effective 

velocity 

thermal expansion coefficient 

jet thrust, lb 

net thrust, lb 

fuel-air ratio 

acceleration due to gravity, 32.2 ft/sec2 

enthalpy, Sk/lb 

Mach number 

engine speed, rpm 

total pressure, lb/sq ft abs 

static pressure, lb/sq ft abs 

gas constant, 53.3 ft-lb/(lb)@) 

Reynolds number index, 8/P@ 

total temperature, 9r 

static temperature, OR 

velocity, ft/sec or knots 

air flow, lb/set 

fuel flow, lb/hr 
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?- ratio of specific heats 
.~. 

6 ratio of total pressure to NACA standard sea-level static pressure 

'lb combustion efficiency 

8 ratio of total temperature to NACA standard sea-level static 
temperature 

Subscripts: 

0 free stream 

1 engine inlet duct 

2 compressor Wet 

3 compressor outlet 

4 turbine inlet 

5 turbine outlet 

9 exhaust-nozzle inlet 

cr critical 

f fuel 

i ideal 

n exhaust nozzle 

ob overboard 

6 scale 
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GENERALIZEDDATA 

NACA BM SE55C08 

Air flow. - Engine inlet air flow was determined from the sum of 
exhaust-nozzle-exit weight flow, engine fuel flow, and compressor over- 
board air flow: 

Waf2 = -4pgy$? &+ wa,ob 

where y was determined from fuel-air ratio and Tg as described in 
reference 8. The exhaust-nozzle flow coefficients were taken from 
reference 2. 

Combustion efficiency. - Combustion efficiency was defined as the 
ratio of the actual to ideal enthalpy rise across the engine: 

9 +fb+Bg 'a,ob 
2 [ 1 ' 

m+l -W T+- a,2 ob 
‘prb= f x 18,;OO 

The term 4Il+B m + 1 accounts for the difference between the enthalpy of 
carbon dioxide and water vapor in the burned mixture and the enthalpy 
of the oxygen removed from the air by their formation (ref. 9). 

Scale jet thrust. - Jet thrust was determined from an algebraic 
summation of the forces acting on the engine. Because the bellmouth 
was attached to the front bulkhead instead of the engine inlet duct 
(fig. 2), the force due to the momentum of the inlet air was included: 

Fj,s = Fd + 
W 
a,2 '1 + Aseal(P1 - Ptay&) i3 

where Fd is the force due 
effective area of the inlet 

True air speed. - True air speed was calculated from the total and 
static pressures and temperatures corresponding to each flight condition 
assumtig no inlet total-pressure loss: 

to the null-type balance and Aseal is the 
duct at station 1. 

Performance Maps 
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Pumping characteristics, air flow, and fuel flow. - Engine total- 
pressure and -temperature ratios were determined from plots of these 
parameters against corrected engine speed for the four exhaust nozzles 
and three Reynolds number indices investigated. 

Engine inlet air flow was obtained by %ncorrectFngM values read 
from figure 5. 

Fuel flow was determined from plots of corrected fuel flow agatist 
corrected engine speed, because the flight conditions selected for the 
performance maps closely approximated the conditions at which the data 
were obtained. 

Thrust. - Jet thrust was calculated from the exhaust-nozzle pressure- 
drop parameter: 

Fj = +&i&26 Pg - po) 

The measured exhaust-nozzle thrust coefficients tabulated as follows 
were used: 

Exhaust- Thrust 
nozzle coefficient 

area, 
sq ft 

1.90 0.97 
1.97 -98 
2.07 .98 
2.51 -98 

Net thrust is defined as the change in momentum imposed on the 
working fluid by the engine: 

W 
Fn =Fj -+Vo 

Altitude performance. - The calculation of true air speed, air flow, 
and engine pumping characteristics was the same for the altitude perfomn- 
ante and performance maps. 
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Fuel flow. - The fuel requirement of the engine was determked from  
the following relation: 

W f 
ri = - 3600 Wa,2 
qb 

The ideal fuel-air ratio was obtained from  references 9 and 10 and is 
presented in figure 12. Engine combustion efficiency was obtained from  
figure 9. 

Thrust. - Jet thrust was calculated as follows: 

Fj 31 cwa,2 - 'a,ob -I- 'f) v 
g n 

+ % (p 
n' PO) 

This equation was solved using the method of reference 8 and an effective 
velocity coefficient of 0.99. 

id CD m  
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APPENDIX c 

To illustrate the method of obtaining engine performance from gen- 
eralized data, the following numerical examples are presented: 

Case I 

For the case when engine speed and exhaust-nozzle area are lazown, 
sea-level static operation of the engine at rated engine speed with the 
rated exhaust-nozzle area was selected. The following are known: 

N= 8300 rpm 

An = 1.97 sq ft 

P2 = 2116 lb/sq ft abs 

p. = 2116 lb/sq ft abs 

T2 = 519O R 

to =I 519' R 

The following may be calculated: 

Rei = 
P2(T2 + 216) 

5.774 T22 
= 1.0 

From figure 5: 

N/G= 8300 rpm 

V,=M,/B=O 

'a,24 
6 = 122.5 lb/set 

W a,2 = 122.5 lb/set 
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From figure 6 the pumping characteristics at a Reynolds number index of 
0.4 are: 

p91p2 = 2.315 

Tg/T2 = 3.22 

The pumping characteristics can now be 
effects using figure 7: 

Then: 

and 

adjusted for Reynolds number 

= 0.99 

= 0.976 

(P9/p2~Rei=l = 2.315 X 0.99 = 2.29 

(TUT,>,,., = 3.22 X 0.976 = 3.14 
1 

Pg = 2.29 X 2ll6 = 4846 lb/sq ft abs 

T9 = 3.14 x 519 = 1629' R 

Jet thrust can be obtained from figure 8 as follows: 

FJ - = 1.26 Pg - p. 
AnCF 

F.= J 1.97 X 0.98l1.26 X 4846 - 2116) 

FJ = 7700 lb 

Net thrust: 
W 

Fn = Fj - -+ V. = 7700 lb 

-. II 
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To calculate the fuel requirement of the engine, the following 
(1 steps are necessary: 

z 
r 
i The ideal fuel-air ratio from figure 12 is f.i =-.0.0157 

*il i, r 
cl :I1 

From figure 9, the combustion efficiency is qb = 0.99 

:i 
Dividing the ideal fuel-air ratio by combustion efficiency to ob- 

b tain the actual fuel-air ratio gives: -i> 

f 0.0157 
= 0.099 = 0.0159 

Then: 
/ 

Wf = fXW a 2 X 3600 t 

wf = 0.0159 X 122.5 x 3600 = 7012 lb/hr 

The specific fuel consumption can then be determined as 

Wf sfc = F 7012 = - = 0.91 
n 7700 

Case II 

For the case when engine speed and turbine-discharge temperature 
are known, the calculation procedure is identical to Case I except for 
the method of determining pumping characteristics. To illustrate this 
difference, the following conditions were selected: 

P2 = 1656 lb/sq ft abs 

T2 = 511° R 

T9 = 1625' R 

N= 8300 rpm 

The following may be calculated: 

N/G = 8350 rpm 

Tg/T2 = 3.18 

Rei = 0.8 

I.- 

t 
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Engine temperature ratio 
of 0.4 using figure 7: 

NACA RM SE55C08 

can be adjusted to a Reynolds number index 

T9 0 Fi Reia.4 
= 3.18 = 3.26 0.976 ^ 1 

Entering figure 6 with corrected engine speed and the adjusted tem- 
perature ratio gives: 

(p9P2 1 = 2.335 
Rei=0.4 

%l = 1.97 

The engine total-pressure ratio can be adjusted for Reynolds number 
effects using figure 7: 

(P9/p2~Rei=0.8 = 2.335 X 0.99 = 2.32 
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TABLE I. - COMPONENT PERFORMANCE OF J65-B3 TURBOJET ENGINE 

0.796 
.799 
.795 
,796 
.796 

,602 
.793 
,797 
.792 
.792 

,399 
.39* 
,402 
.399 
.396 

.398 

.399 

.395 

.397 

.395 

.393 

.193 

.166 

.191 

.190 

::I 
.I92 
.19* 
.194 

0.197 
.600 
.791 
.793 
.600 

,799 
,796 
.8M 
,796 
,400 

.402 
,401 
,395 
.391 
.395 

,396 
.*a 
.390 
.395 
.195 

.19* 

.197 

.201 

.199 

.19* 

T 
1762 
1766 
1758 
1729 
1761 

1729 
1754 
1735 
1715 
1717 

QZQ 
621 

626 
626 

626 
62+ 
615 
624 
617 

621 

E 
297 
294 

301 
302 
302 
307 
305 

1746 
1755 
1749 
1747 
1759 

1753 
1746 
1755 
1736 

612 

512 
606 
599 
604 
604 

637 
626 
641 
624 
309 

309 
309 
315 
311 

-s- 

537 
537 
537 
530 
537 

527 
531 
531 
529 
529 

413 
412 
413 
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TABLE I. - Concluded. COMPONENT PERFORMANCE OF J65-B3 TURBOJET ENGINE 
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Bigure 1. - Jffi-B3 Turbojet errgine in altitude test chamber. 

P 
F 



r Front bulkhead 

:;:;:i;:;:ps.+ ,.... . . .._.. :.:.:.:.::::::i:i:i::;:;:$ ._._ :,:,:.__. “. . . . . . . . . . 

a - Manufacturers instrumentation. 

Figure 2. - Schematic diagram of engine showing instrumentation stations. 



Flight Mach number, q 

Figure 3. - Minimum corrected engine speed at which exhaust nozzle may be 
considered fully choked. 
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Figure 4. - Effect of altitude on engine operational limits. Flight Mach number, 0 8 
rated exhaust nozzle (1.97 sq ft). - i 
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Figures.- Variation of corrected air flow with corrected engine speed for Reynolds number indices from 0.8 
to 0.2 and exhaust-nozzle 8.reas from 1.90 to 2.51 square feet. 
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Figure 6. - Engine pumping characteristics at an inlet Reynolds number index of 0.4. 

& 

.-... ~~ ___ .-._ 



._.-_.- -..---- ~ ..--._- ._..-.-. 

26 

A km bN & 
k% 
& ’ 
(UC4 pi 

9-l 
2 -kJ 
7 cd 
5 LAEY 
%K 
b pI Brn I EY 
El B 

1.1 

1.0 

.9 

NACARMSE55CO8 

.4 .6 .8 
.Reynolds number index, Rei 

Figure 7. - Effect of Reynolds number index on 
engine pumping characteristics. 
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Figure 8. - Correlation of jet thrust for Reynolds rcumber indices from 0.8 to 0.2 and 
exhaust-nozzle zreza from 1.90 to 2.51 square feet. 
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Figure 9. - Correlation of combustion efficiency for Reynolds number indices from 0.8 to 0.2 and 
exhaust-nozzle areas from 1.90 to 2.51 square feet. 
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Figure 10. - Engine performance maps. Flight Mach number, 0.7. 
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Figure 10. - Continued. Engine performance maps. Flight Mach number, 0.7. 
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Figure 10. - Concluded. Engine performance maps. Flight Mach number, 0.7. 
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Figurell. - Altitude performance calculated from pumping 
characteristics for rated exhaust-nozzle area. 
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Figure ll. - Continued. Altitude performance calculated from pumping 
characteristics for rated exhaust-nozzle area. 
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Figure IL. - Continued. Altitude performance cal&Lated from 
pun@ng characteristics for rated exhaust-nozzle area. 
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Figure IL. - Continued. Altitude performance calculated from pumping 
characteristics for rated exhaust-nozzle area. 
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Figure 11. - Continued. Altitude performance calculated from pumping 
characteristics for rated exhaust-nozzle area. 
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Figure 11. - Concluded. Altitude performance calculated from pumping 
characteristics for rated exhaust-nozzle area. 
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Figure 12. - Ideal fuel-a:r ratio as a function of engine temperature rise. 
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